Shedding new light on neural imaging research

News
Article section 1 of 1.  

Apr 03, 2012

Neural imaging—maps of brain functions—is a primary tool used by researchers hoping to transform the lives of people living with chronic neurologic conditions such as epilepsy. At present, researchers often require several different imaging techniques to fully map brain functions, making research and treatment of these conditions expensive and inefficient.

Using cutting-edge illumination technology, Professor Ofer Levi and his research students from the Institute of Biomaterials & Biomedical Engineering (IBBME) and The Edward S Rogers Sr Department of Electrical & Computer Engineering (ECE) have developed a new cost-effective neural imaging system. It allows researchers to make much more complex maps of the brain with just 1 camera and 1 imaging system. The team's initial findings, released this week in Biomedical Optics Express, demonstrate that this new technology may one day transform the way researchers view the human brain.

Developed from the same technology that lights up our cell phones and computers, this unique system uses vertical cavity surface emitting lasers (VCSEL): low-cost, easily-tested, miniature microchip lasers mounted on an extremely fast, sensitive camera, which allows the operator to switch the lasers on and off with extraordinary speed and precision. This rapid light manipulation (at a rate of approximately 1x/millisecond) means that the brain can be mapped with greater sophistication and precision—much more quickly. Results published in Professor Levi's article, for instance, demonstrate that this imaging technology is able to classify both veins and arteries simultaneously—something never before accomplished.

Hart Levy, co-author of the article and recent graduate of ECE and IBBME, looks forward to seeing the results of further testing. "It's amazing to develop something that's going to be used to help people," he said.

Professor Levi asserts that this new, "agile system" is only the beginning; he plans to adapt the technology into a portable model, which would enable researchers to conduct studies with "freely behaving," or non-anesthetized, animals. Although other portable neural mapping systems already exist, Professor Levi's multi-modality technology mean that blood flow, oxygenation, and florescence—the 3 components of the human brain that researchers look at, which currently requires 3 different imaging systems—can be mapped simultaneously.

Professor Levi's imaging system may someday enable researchers to pinpoint metabolic changes in the brain that occur just moments prior to an epileptic seizure, or may help doctors map the brain's "areas of eloquence," those areas that need to remain untouched, prior to surgery on epileptic patients. Currently these areas are mapped electrically, over sometimes-extended periods of time and with great discomfort to the patient.

Other applications may include helping researchers create brain-interface technology that would allow researchers "to decode [disabled children’s] intentions in the absence of speech and gestures," said Professor Chau in a statement. Professor Levi and his former U of T Master's student, Elizabeth Munro, submitted a patent for the new technology adaptations through the University of Toronto Innovation Group in January.

Source: News Release
University of Toronto Faculty of Applied Science & Engineering
April 2, 2012